Photoluminescent Arrays of Nanopatterned Monolayer MoS2
نویسندگان
چکیده
Monolayer 2D MoS2 grown by chemical vapor deposition is nanopatterned into nanodots, nanorods, and hexagonal nanomesh using block copolymer (BCP) lithography. The detailed atomic structure and nanoscale geometry of the nanopatterned MoS2 show features down to 4 nm with nonfaceted etching profiles defined by the BCP mask. Atomic resolution annular dark field scanning transmission electron microscopy reveals the nanopatterned MoS2 has minimal large-scale crystalline defects and enables the edge density to be measured for each nanoscale pattern geometry. Photoluminescence spectroscopy of nanodots, nanorods, and nanomesh areas shows strain-dependent spectral shifts up to 15 nm, as well as reduction in the PL efficiency as the edge density increases. Raman spectroscopy shows mode stiffening, confirming the release of strain when it is nanopatterned by BCP lithography. These results show that small nanodots (≈19 nm) of MoS2 2D monolayers still exhibit strong direct band gap photoluminescence (PL), but have PL quenching compared to pristine material from the edge states. This information provides important insights into the structure–PL property correlations of sub-20 nm MoS2 structures that have potential in future applications of 2D electronics, optoelectronics, and photonics.
منابع مشابه
Photoluminescence from chemically exfoliated MoS2.
A two-dimensional crystal of molybdenum disulfide (MoS2) monolayer is a photoluminescent direct gap semiconductor in striking contrast to its bulk counterpart. Exfoliation of bulk MoS2 via Li intercalation is an attractive route to large-scale synthesis of monolayer crystals. However, this method results in loss of pristine semiconducting properties of MoS2 due to structural changes that occur ...
متن کاملNH3 sensors based on novel TiO2/MoS2 nanocomposites: Insights from density functional theory calculations
Density functional theory calculations were performed to investigate the interactions of NH3 molecules with TiO2/MoS2 nanocomposites in order to completely exploit the adsorption properties of these nanocomposites. Given the need to further comprehend the behavior of the NH3 molecules oriented between the TiO2 nanoparticle and MoS2 monolayer, we have geometrically optimized the complex systems ...
متن کاملPatterned arrays of lateral heterojunctions within monolayer two-dimensional semiconductors
The formation of semiconductor heterojunctions and their high-density integration are foundations of modern electronics and optoelectronics. To enable two-dimensional crystalline semiconductors as building blocks in next-generation electronics, developing methods to deterministically form lateral heterojunctions is crucial. Here we demonstrate an approach for the formation of lithographically p...
متن کاملEnhanced Light Emission from Large-Area Monolayer MoS2 Using Plasmonic Nanodisc Arrays
Single-layer direct band gap semiconductors such as transition metal dichalcogenides are quite attractive for a wide range of electronics, photonics, and optoelectronics applications. Their monolayer thickness provides significant advantages in many applications such as field-effect transistors for high-performance electronics, sensor/ detector applications, and flexible electronics. However, f...
متن کاملNH3 sensors based on novel TiO2/MoS2 nanocomposites: Insights from density functional theory calculations
Density functional theory calculations were performed to investigate the interactions of NH3 molecules with TiO2/MoS2 nanocomposites in order to completely exploit the adsorption properties of these nanocomposites. Given the need to further comprehend the behavior of the NH3 molecules oriented between the TiO2 nanoparticle and MoS2 monolayer, we have geometrically optimized the complex systems ...
متن کامل